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Abstract 

Background:  Protein function prediction remains a key challenge. Domain composi‑
tion affects protein function. Here we present DomFun, a Ruby gem that uses associa‑
tions between protein domains and functions, calculated using multiple indices based 
on tripartite network analysis. These domain-function associations are combined at the 
protein level, to generate protein-function predictions.

Results:  We analysed 16 tripartite networks connecting homologous superfamily and 
FunFam domains from CATH-Gene3D with functional annotations from the three Gene 
Ontology (GO) sub-ontologies, KEGG, and Reactome. We validated the results using 
the CAFA 3 benchmark platform for GO annotation, finding that out of the multiple 
association metrics and domain datasets tested, Simpson index for FunFam domain-
function associations combined with Stouffer’s method leads to the best performance 
in almost all scenarios. We also found that using FunFams led to better performance 
than superfamilies, and better results were found for GO molecular function compared 
to GO biological process terms. DomFun performed as well as the highest-performing 
method in certain CAFA 3 evaluation procedures in terms of Fmax and Smin We also 
implemented our own benchmark procedure, Pathway Prediction Performance (PPP), 
which can be used to validate function prediction for additional annotations sources, 
such as KEGG and Reactome. Using PPP, we found similar results to those found 
with CAFA 3 for GO, moreover we found good performance for the other annotation 
sources. As with CAFA 3, Simpson index with Stouffer’s method led to the top perfor‑
mance in almost all scenarios.

Conclusions:  DomFun shows competitive performance with other methods evalu‑
ated in CAFA 3 when predicting proteins function with GO, although results vary 
depending on the evaluation procedure. Through our own benchmark procedure, 
PPP, we have shown it can also make accurate predictions for KEGG and Reactome. It 
performs best when using FunFams, combining Simpson index derived domain-func‑
tion associations using Stouffer’s method. The tool has been implemented so that it 
can be easily adapted to incorporate other protein features, such as domain data from 
other sources, amino acid k-mers and motifs. The DomFun Ruby gem is available from 
https://​rubyg​ems.​org/​gems/​DomFun. Code maintained at https://​github.​com/​Elena​
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Rojano/​DomFun. Validation procedure scripts can be found at https://​github.​com/​
Elena​Rojano/​DomFun_​proje​ct.
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Background
Determining protein function is one of the major goals of bioinformatics. A key fac-
tor influencing the role of a given protein is its domain composition [1, 2]. Although 
domains can have distinct functions when examined individually, their combination 
within a given protein is what gives rise to its overall role in cellular processes [3]. As 
such, we must first understand individual domains and then investigate how they con-
tribute to protein function. Approaches like dcGO use information from resources such 
as the Gene Ontology (GO) [4, 5], to statistically infer domain annotation [6].

Various features are important for function prediction, including sequence homology 
and conserved structure, which are used to classify protein domains by resources such 
CATH-Gene3D [7, 8], which uses a hierarchical classification system with the most spe-
cific group being the homologous superfamily [9].

Within the homologous superfamilies, domains can be further sub-divided into func-
tional families (FunFams), based on shared patterns of sequence conservation [10]. Such 
domain families have been used by algorithms such as FunFHMMer to predict function 
at the protein level [9]. Furthermore, FunFam domain information has been used to pre-
dict protein functional sites using machine learning [11].

In recent years, we have developed tools to analyse and extract information from net-
work-based data structures [12, 13]. We used them to find associations between patho-
logical phenotypes and genomic mutations [14–17], and predict the genes involved in 
the development of rare diseases [18]. Nevertheless, without adequate functional knowl-
edge of the proteins encoded by these genes, we cannot fully understand the underlying 
mechanisms leading to disease.

Here, we present DomFun, a framework that uses associations between protein 
domains and functional annotation to predict protein function (Fig. 1).

These associations are calculated by exploiting tripartite networks connecting domains 
and functional groups via proteins [19], using GO terms and pathways from KEGG [20] 
and Reactome [21]. For a given protein, DomFun obtains its constituent domains and 
their functional associations. The association scores are then combined to predict func-
tional annotation.

We validated our method using the prediction benchmark of the third version of the 
Critical Assessment of Functional Annotation challenge (CAFA 3) [22]. This evaluation 
method is widely used to evaluate protein function prediction methods. We focussed 
on GO annotation for proteins from multiple organisms in the three GO sub-ontolo-
gies: molecular function (GOMF), biological process (GOBP) and cellular component 
(GOCC). We have also developed and applied our own benchmarking protocol, named 
Pathway Prediction Performance (PPP).

DomFun can be used to predict protein function for multiple organisms for which 
protein domain and functional annotation information is available. Although we used 
CATH-Gene3D annotation in this work, other features can be used. It can be down-
loaded from https://​rubyg​ems.​org/​gems/​DomFun. Ruby code is available from https://​

https://github.com/ElenaRojano/DomFun
https://github.com/ElenaRojano/DomFun_project
https://github.com/ElenaRojano/DomFun_project
https://rubygems.org/gems/DomFun
https://github.com/ElenaRojano/DomFun
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github.​com/​Elena​Rojano/​DomFun and the workflow from https://​github.​com/​Elena​
Rojano/​DomFun_​proje​ct. Technical information to install and use DomFun is provided 
in these repositories.

Implementation
We have developed and implemented DomFun, a tool to predict function for a given 
protein based on associations between its constituent domains and functions, obtained 
from various annotation-databases. Associations are calculated using a tripartite net-
work comprised of domains, proteins and functional annotation. The DomFun algo-
rithm works in the following manner: Based on a training dataset, protein-domain and 
protein-function annotation data are combined to produce a tripartite network of 3 lay-
ers: domains-proteins-functions. This tripartite network is analysed using the NetAn-
alyzer software [12]. NetAnalyzer take as input a multipartite network and calculates 
associations between different layers within this network. In the context of this work, the 
layers are: domains, proteins and functions, and the associations are calculated between 
the domains and functions layers, bases on the connections via proteins. The output is 
therefore a list of pairs of domains and functions, with corresponding association values. 
Lists, with their corresponding association values, were calculated for 4 different asso-
ciation indices, mathematical details of which are described in the next section.

Fig. 1  Workflow of the procedure followed in this study. We first built the domain-protein-function tripartite 
network. Then, we calculated associations between domains and functional annotations (through shared 
proteins) with NetAnalyzer. Once calculated, we combine these domain-function associations to predict 
proteins function with DomFun. For a given protein, DomFun obtains its constituent domains and their 
associated functions. These domain-function association values are combined to obtain protein-function 
scores

https://github.com/ElenaRojano/DomFun
https://github.com/ElenaRojano/DomFun_project
https://github.com/ElenaRojano/DomFun_project
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Then, given a testing protein, DomFun predicts function for this protein by obtain-
ing all of its annotated domains and searching for their associated functions in the list 
generated by NetAnalyzer. The scores for these associated functions are then combined 
using the methods whose mathematical formulae are described below, to obtain overall 
scores, which represent the predicted functions for the protein.

An overview of the architecture of the software implementation is described in Fig. 1.

Protein, domain and annotation data sources

To build the domain-protein-function tripartite networks used to calculate the domain-
function associations with DomFun, two types of relations were combined: protein-
function and protein-domain.

The workflow followed to perform the different steps explained next and data down-
load links are included in a GitHub repository at https://​github.​com/​Elena​Rojano/​Dom-
Fun_​workf​low.

Protein‑function annotation

We used two datasets to establish protein-function relations.
The first dataset was based on the functional annotation included in the third Critical 

Assessment of Functional Annotation challenge (CAFA 3) [22]. We used 66,841 protein 
identifiers available for the CAFA 3 training set (35,086 annotated in GOMF, 50,813 in 
GOBP and 49,328 in GOCC) to construct the protein-annotation layer for six tripartite 
networks. This information was downloaded from CAFA 3 repository at https://​www.​
biofu​nctio​npred​iction.​org/​cafa-​targe​ts/​CAFA3_​train​ing_​data.​tgz.

The second dataset was downloaded from UniProt (release 2021_02). We obtained 
23,391,902 proteins both manually curated (Swiss-Prot) and computationally inferred 
(TrEMBL) for multiple species. We also downloaded their annotations in GOMF, GOBP, 
GOCC, KEGG and Reactome. We discarded proteins with GO annotation tagged as 
Inferred from Electronic Annotation (IEA) to ensure high-quality annotations for our 
study. We also discarded all protein tagged as fragments and protein fusions. We used 
this information to construct the protein-annotation layer for ten different tripartite net-
works. After these filters, we were left with 4,283,876 annotated proteins. Please note 
that the same protein may have annotation in any of the GO sub-ontologies, KEGG or 
Reactome.

Protein‑domain annotation

To establish protein-domain relations, we used protein domains classified into homol-
ogous superfamilies and FunFams from the protein structure classification database 
CATH-Gene3D [8]. Superfamily classification is performed by grouping sequences likely 
to have an evolutionary relationship [9]. FunFams are a sub-classification of superfami-
lies based on shared patterns of sequence conservation related to function determining 
residues [23]. For this analysis, we used the CATH-Gene3D release v4_3_0, includ-
ing 1,307,795 proteins from 1705 species, 4245 different superfamilies and 171,425 
FunFams.

https://github.com/ElenaRojano/DomFun_workflow
https://github.com/ElenaRojano/DomFun_workflow
https://www.biofunctionprediction.org/cafa-targets/CAFA3_training_data.tgz
https://www.biofunctionprediction.org/cafa-targets/CAFA3_training_data.tgz
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Tripartite network construction and association index calculation

We obtained multiple sets of protein-function and protein-domain relations. In total 
we built 16 networks connecting domains to functional annotation via shared pro-
teins, one for each combination of protein-domain and protein-function datasets.

These domain-protein-function networks were analysed with NetAnalyzer, a tool 
that calculates associations in multipartite networks [12]. We employed this tool to 
calculate domain-function associations using the Jaccard similarity index (eq.  1), 
Simpson index (eq. 2), Pearson correlation coefficient (PCC) (eq. 3) and the hypergeo-
metric index (HyI) (eq. 4), as described in [24].

where Np(D) and Np(F) are the set of protein nodes connected to a given domain node 
D and a function node F, respectively, and nT is the total number of protein nodes in the 
network.

Protein function prediction based on domain‑function associations

The domain-function associations calculated using the above methods were used to 
predict protein function using DomFun. First, for a given protein, associated with 
a specific UniProt identifier, DomFun searches for its constituent domains within 
CATH-Gene3D. If domains are found, it then searches for any functions associated 
with them. If a protein contains multiple domains associated with the same functional 
annotation (Fig.  1), DomFun integrates the association values into a single combined 
score. This leads to a list of possible functions for the protein, ranked based on the 
strength of the domain-function associations, as described in the next section.

By calculating this score for all functions associated with at least one domain for a 
given protein, we obtain a vector of scores, which represents the predicted functions 
for the protein.

DomFun outputs a table of predicted functions for each protein, containing the 
UniProt identifier, the domains for that protein classified according to CATH-
Gene3D superfamilies or FunFams, the predicted functions (GOMF, GOBP, GOCC, 
KEGG and Reactome) and the combined score for each putative protein-function 
association.

(1)Jaccard(D, F) =
|Np(D) ∩ Np(F)|
|Np(D) ∪ Np(F)|

(2)Simpson(D, F) =
|Np(D) ∩ Np(F)|

min(|Np(D)|, |Np(F)|)

(3)PCC(D, F) =
|Np(D) ∩ Np(F)| · nT − |Np(D) · Np(F)|

√

|Np(D)| · |Np(F)| · (nT − |Np(D)|) · (nT − |Np(F)|)

(4)HyI(D, F) =− log

min(|Np(D)|,|Np(F)|)
∑

i=|Np(D)
⋂

Np(F)|

(|Np(D)|
i

)

·
(nT−|Np(D)|

|Np(F)|−i

)

( nT
|Np(F)|

)
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Combining domain‑function association values

As mentioned above, if a protein contains multiple domains with the same function, 
these scores are combined into a single value. In the case of HyI values, these must be 
transformed into P-values by calculating their antilogarithm (base=10), which repre-
sents the probability of having an equal or greater number of interactions between a pair 
of nodes (i.e., proteins connecting domains and functional annotations) than would be 
expected by chance [24]. To integrate these P-values we use the Fisher’s combined prob-
ability test (eq. 5).

Where pji is the HyI-derived P-value for the number of interactions between a func-
tion j and the domain i, and 2k represents the degrees of freedom. k represents the total 
number of domains for each predicted protein. This formula gives the test statistic, from 
which the combined P-value can be derived, based on the χ2 distribution and degrees of 
freedom.

When combining association values produced using PCC, Jaccard or Simpson index, 
Stouffer’s method was used to obtain, for each of the three metrics, combined associa-
tion values between proteins and functions (eq. 6) [25]. For this, the association values 
are first converted to Z-scores and then combined using the following formula:

For a given protein, an overall Z-score was calculated for each of the functions j associ-
ated with at least one domain i within this protein. This was calculated by summing the 
Z
j
i scores for the domains in the protein associated with the given function and dividing 

by the square root of k—the number of domains in the protein associated with the given 
function.

The Zj
i scores were calculated for each given domain-function association value, by 

subtracting the mean association value for all domain-function associations, and divid-
ing by the standard deviation.

Where a represents the association values for all calculated domain-function associa-
tions; a

j
i represents the association value for the domain i with a given function j; ā rep-

resents the mean association value for all domain-function associations; and s represents 
the standard deviation for the values in a.

DomFun evaluation methods

We evaluated the ability of DomFun to predict protein function using the CAFA 3 pre-
diction benchmark for GOBP, GOMF and GOCC, using the methodology described in 
[26] with data available from the CAFA 3 website (https://​www.​biofu​nctio​npred​iction.​

(5)Xj = −2

k
∑

i=1

ln(p
j
i) ∼ χ2

2k

(6)Zj =
∑k

i=1 Z
j
i√

k
∼ Z

(7)Z
j
i =

a
j
i − ā

s

https://www.biofunctionprediction.org/cafa
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org/​cafa). We also developed our own validation procedure to evaluate DomFun in 
terms of predicting function for KEGG and Reactome pathways. We refer to this pro-
cedure as Pathway Prediction Performance (PPP). We also used PPP for GOMF, GOBP 
and GOCC annotations — as similar evaluation values for the three GO sub-ontologies 
to those found with CAFA 3 would suggest that our benchmark procedure is reliable and 
lend confidence to the interpretation of the PPP results for KEGG and Reactome.

For this validation, we looked at the maximum value of the harmonic mean ( Fmax ) of 
precision and recall (PR), and Smin , based on the semantic distance between predictions 
and known annotations, in line with CAFA 3.

In total, we made eight separate sets of predictions, for the four different association 
metrics, separately for FunFams and superfamilies. Rather than compare all eight sets 
against all methods benchmarked within the CAFA 3 results (146 distinct methods), we 
initially compared the eight sets to each other, to see which performed best across all 
testing scenarios. The top performing method was then compared against the best per-
forming method from CAFA 3 for each scenario.

CAFA 3 prediction benchmark

We used data from CAFA 3, a challenge aimed at comparing various methods for pre-
dicting protein function, to evaluate the predictive capability of DomFun [22]. In brief, 
the idea was that competitors would predict annotation for a number of proteins, and 
then compare their predictions to experimentally determined functional annotation 
obtained during a given time-period ( t0-t1 ). As a result, they acquired and published a 
dataset including a list of the proteins that obtained annotation during this time period, 
their annotations at the start of the challenge ( t0 ) and at the end of the challenge ( t1 ), and 
a benchmarking procedure with scripts to implement it.

The CAFA 3 dataset includes various sub-divisions to evaluate the prediction meth-
ods, as explained in [22, 26], including two modes of evaluation: full and partial, and 
two types of annotation: no knowledge and limited knowledge. Full evaluation penal-
izes models if they cannot predict for all GO sub-ontology terms; partial mode evaluates 
without this penalization.

With respect to the different proteins in the benchmark testing set, no knowledge pro-
teins are those with no experimentally verified annotation in any of the three GO sub-
ontologies at time t 0 , but that accumulate at least one verified GO term between t 0 and 
t 1 . Limited knowledge includes proteins with annotation in at least one GO sub-ontol-
ogy, but not in all three at t 0 [22, 26]. We used different combinations to see with which 
one of our methods performed best in different scenarios.

We used the CAFA protein-centric evaluation mode. It calculates maximum F-meas-
ure Fmax , using PR values for the proteins for which predictions could be made, to ascer-
tain the performance of the predictive method. It also calculates the minimum semantic 
distance ( Smin ) between two GO terms (one from prediction and the other from the 
ground truth, i.e. CAFA 3). In addition, it calculates coverage, defined in this work as the 
fraction of benchmark proteins for which DomFun could make predictions. Formulae of 
these evaluation metrics are described in [26].

The CAFA 3 benchmark files include 3089 proteins. We consider this set as our test-
ing set. We predicted GOMF, GOBP and GOCC for 2483 proteins from this set. As 

https://www.biofunctionprediction.org/cafa


Page 8 of 19Rojano et al. BMC Bioinformatics           (2022) 23:43 

occurred with the training proteins set, we lost 606 testing proteins as they had no 
CATH domains. This loss affects prediction performance in terms of coverage.

We compared DomFun performance against the two baseline models, Naïve and 
BLAST. We generated both models following instructions provided by CAFA authors 
[22]. We also compared the performance of our methods with the top scoring methods 
from CAFA 3, in terms of both Fmax and Smin , for all three ontologies and all four combi-
nations of evaluation type and mode. Analyses were made using all organisms.

According to CAFA submission rules, prediction scores must be within the (0.00,1.00] 
range. Therefore, we normalized the combined scores for each protein. In the case 
of scores calculated using Stouffer’s method, as PCC values were within a range of 
[-1.00,1.00], their absolute values were calculated before they were combined. For Jac-
card and Simpson combined scores, normalization was performed as follows: combined 
scores were transformed to Z-scores and any value with absolute value greater than 2 
was set to 2. Finally, the distribution was normalised to the (0.00,1.00] range by dividing 
each value by the distribution range (4) and adding 0.5. In the case of scores calculated 
using Fisher’s method, i.e. the combined HyI derived P-values, we transformed them 
into the (0.00,1.00] range by subtracting the P-value generated by the method from 1. To 
avoid spurious predictions, we removed predictions with a transformed score lower than 
0.001.

To compare the results of the different association/combination methods used by 
DomFun on the CAFA 3 testing proteins, for both FunFams and superfamilies, we com-
pared their results in terms of Fmax and Smin using the Friedman test. If this gave a signif-
icant result ( p ≤ 0.05 ), meaning there is a difference between groups, this was followed 
by post-hoc pair-wise Dunn’s tests to identify a significant difference between the top 
ranked method and the other methods ( p ≤ 0.05 ) [27].

Pathway prediction performance

In the pathway prediction performance (PPP) validation procedure, we predicted pro-
tein function (across all three GO sub-ontologies, KEGG and Reactome) for all proteins 
that were used to build the domain-protein-function tripartite networks. We compared 
these predicted associations to the original protein-function associations, and built pre-
cision-recall (PR) curves. For this, all predicted annotations that matched the original 
annotation were considered true positives; all predictions that did not match the origi-
nal annotation were considered false positives. This additional validation procedure was 
necessary to evaluate the results obtained using KEGG and Reactome. As we had already 
validated the GO annotation using the CAFA 3 benchmarking procedure, we were able 
to use the PPP procedure to compare the results using KEGG and Reactome to the GO 
results and put them in the context of the CAFA 3 predictions. PR curves were gener-
ated using the ROCR package [28].

Results
We associated protein domains with functions by applying various metrics to tripartite 
networks formed by combining protein-domain and protein-function annotation via 
shared proteins. Functional annotation was obtained from the Gene Ontology molecular 
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function (GOMF), biological process (GOBP) and cellular component (GOCC) sub-
ontologies and KEGG and Reactome pathways.

The domain-function associations were then used by DomFun for protein function 
prediction. Two validation procedures were used, one using the training and testing pro-
teins from the CAFA 3 benchmark dataset [22], and another based on all Uniprot pro-
teins (Pathway Prediction Performance, PPP).

CAFA 3 benchmark results

The CAFA 3 training set contains 98,567 proteins from multiple organisms, of which 
50,813 had annotations in GOBP, 35,086 in GOMF and 49,328 in GOCC [22]. We used 
all proteins from these sets that had CATH-Gene3D annotation to build domain-pro-
tein-function tripartite networks for each of the sub-ontologies. In total, there were 
41,453 proteins with domain and GOBP annotation, 30,650 with GOMF and 39,144 with 
GOCC, corresponding to a loss of 18.42%, 12.64% and 20.64% proteins, respectively, 
from the training set.

We used the domain-function associations calculated for the CAFA 3 training pro-
teins at t0 to predict GO annotation for the 3,089 testing proteins included in CAFA 3, 
of which 2,483 had domain annotation. Predictions were compared to the annotation 
obtained for these proteins between t0 and t1.

We analysed the results to evaluate which combination of domain family, association 
and integration methods led to the most accurate predictions. This was performed sep-
arately for the FunFam and homologous superfamily classifications. We initially com-
pared the results of each method to each other and to the two CAFA 3 baseline methods 
(BLAST and Naïve) in terms of maximum F-measure Fmax (Fig.  2). The exact values 
are shown in Table 1 for the CAFA 3 limited-knowledge, partial evaluation procedure. 
Full results for all four CAFA 3 evaluation procedures are shown in Additional file  1: 
Table  S1. In terms of Fmax , we obtained higher values when using FunFam domains 
compared to superfamilies for all three GO sub-ontologies. In fact, using superfamily 
annotation, DomFun performed worse than the baseline methods in most cases. Better 
results were found in general when predicting both GOMF and GOCC annotation than 
GOBP; this trend also occurs with the top CAFA 3 methods [22].

Simpson index with Stouffer’s method applied to FunFams ranked highest on average 
amongst all association indices implemented here using NetAnalyzer, for all evaluation 
procedures across all sub-ontologies, according to both Fmax and minimum semantic 
distance ( Smin ). Moreover, for Fmax it was the best performing method in all cases, with 
the exception of the no knowledge, full evaluation (Type 1, Mode 1) comparison for the 
molecular function sub-ontology (Table 2). Similar results were seen for the Smin output 
measure (Additional file 2: Table S2).

We compared the results obtained by DomFun to the top results from CAFA 3 for 
all four evaluation procedure combinations and all three GO sub-ontologies (Table 3). 
DomFun was the top method using GOMF for the limited knowledge partial evalua-
tion procedure and competitive in several other situations. Similar results were found 
for Smin , with DomFun obtaining a lower score than the top CAFA 3 method for the no 
knowledge full evaluation procedure and the limited knowledge partial evaluation pro-
cedure (Additional file 3: Table S3). For both Fmax and Smin , DomFun tended to obtain 
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Fig. 2  DomFun evaluation in terms of maximum F-measure ( Fmax ) calculation when predicting for Gene 
Ontology (GO) molecular function (GOMF) (a), biological process (GOBP) (b) and cellular component (c) 
(GOCC) terms using the CAFA 3 prediction benchmark. The associations between GO terms and protein 
domains, classified using FunFams (FF) and superfamilies (SF) separately, were calculated using four different 
association indices: Jaccard (Jac), Simpson (Sim), Pearson correlation coefficient (PCC) and hypergeometric 
index (HyI), and combined using either Fisher’s method (Fis) or Stouffer’s method (Sto). Results for the 
baseline methods BLAST and Naïve are also included for comparison. Coverage (C) values for each method 
are included within the bars. The CAFA 3 evaluation procedure was set to partial mode and limited 
knowledge

Table 1  Maximum F-measure ( Fmax ) scores obtained with DomFun using the CAFA 3 prediction 
benchmark

The best performing methods for each domain/GO subontology combination are indicated in bold

FA Functional annotation, HyI hypergeometric index, Sim Simpson index, PCC Pearson correlation coefficient, Jac Jaccard 
index, Sto Stouffer’s combination method, Fis Fisher’s combined probability test. CAFA 3 evaluation procedure set to partial 
mode and limited knowledge

Domain classification FA Association + combination methods

HyI + Fis PCC+Sto Jac + Sto Sim+Sto

Fmax values from PR curves (domain-FunFys associations for CAFA 3 target proteins)

 FunFams GOMF 0.608 0.553 0.515 0.624
GOBP 0.452 0.444 0.443 0.492
GOCC 0.542 0.529 0.529 0.602

 Superfamilies GOMF 0.314 0.347 0.350 0.384
GOBP 0.099 0.172 0.238 0.174

GOCC 0.254 0.353  0.398 0.340
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worse coverage than the best performing CAFA 3 method, although this was not always 
the case, particularly for Smin . All values of Smin and coverage, for all methods, sub-ontol-
ogies and validation procedures, are shown in Additional files 4 and 5: Tables S4 and S5.

Pathway prediction performance results

We further validated DomFun using the PPP validation procedure. Precision and 
recall (PR) curves for are shown in the Additional files 6 and 7: Figs. S1 and S2. Fmax 
values are shown in Table 4. As with CAFA 3 validation, we observe better AUC-PR 
values for FunFam predictions than superfamilies.

We compared the Fmax values calculated using PPP (Table 4) against those for the 
CAFA 3 benchmark (Table 1).

Table 3  Fmax top values: DomFun (Simpson + Stouffer) vs. CAFA 3 methods

Type 1: no knowledge, type 2: limited knowledge. Mode 1: full evaluation, mode 2: partial evaluation

Ontology Type Mode Top DomFun 
Fmax

DomFun 
coverage

Top CAFA 3 Fmax CAFA 3 
coverage

GOMF 1 1 0.357 0.71 0.618 1

GOMF 1 2 0.567 0.41 0.622 0.02

GOMF 2 1 0.431 0.49 0.622 1

GOMF 2 2 0.624 0.49 0.623 0.88

GOBP 1 1 0.275 0.46 0.397 1

GOBP 1 2 0.402 0.46 0.418 0.62

GOBP 2 1 0.37 0.55 0.598 1

GOBP 2 2 0.492 0.55 0.64 0.83

GOCC 1 1 0.412 0.49 0.615 1

GOCC 1 2 0.606 0.49 0.908 0

GOCC 2 1 0.422 0.51 0.615 1

GOCC 2 2 0.602 0.51 0.825 0

Table 4  Maximum F-measure ( Fmax ) scores for precision and recall (PR) curves obtained with 
DomFun using the Pathway Prediction Performance benchmark procedure

 The best performing methods for each domain/annotation source  combination are indicated in bold

FA Functional annotation, HyI hypergeometric index, PCC Pearson correlation coefficient, Jac Jaccard index, Sim Simpson 
index, Sto Stouffer’s method, Fis Fisher’s method

Domains classification FA Association + combination methods

HyI+Fis PCC+Sto Jac+Sto Sim+Sto

Fmax values from PR curves (domains-FunFys associations from UniProt proteins)

 FunFams GOMF 0.779 0.749 0.749 0.850
GOBP 0.643 0.604 0.604 0.714
GOCC 0.750 0.704 0.704 0.824
KEGG 0.730 0.730 0.730 0.822
Reactome 0.762 0.680 0.663 0.822

 Superfamilies GOMF 0.241 0.370 0.373 0.139

GOBP 0.196 0.291 0.305 0.089

GOCC 0.266 0.221 0.217 0.129

KEGG 0.132 0.340 0.271 0.494
Reactome 0.127 0.344 0.327 0.081
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We observed similar Fmax values for GOMF, GOCC and GOBP predictions for both 
CAFA 3 and PPP evaluations using FunFams. These results gives us confidence in the 
validity of DomFun for predicting KEGG and Reactome pathways. Interestingly, the pre-
dictions for these pathways lead to similar Fmax values to those calculated for GOMF 
and GOCC.

The highest Fmax values for predictions using FunFams correspond to those calculated 
using Simpson index with Stouffer’s method, in line with the results obtained using the 
CAFA 3 dataset and lending confidence to the potential use of PPP as a further valida-
tion system that can be extended beyond GO to other annotation databases.

With respect to the predictions performed with superfamilies, the Fmax values for 
GOMF, GOBP and GOCC were lower in comparison with FunFams, again suggesting 
that our methodology works better with FunFams, as also shown in the CAFA 3 results.

Discussion
We have presented DomFun, a novel approach to predict protein function based on 
associations between domains and functions. The method is based on the same protein 
domains classification system used by the FunFHMMer method [9], evaluated in CAFA 
3 under the name of Orengo-FunFams [22].

Although both methods are based on similar underlying data, DomFun differs funda-
mentally from Orengo-FunFams in terms of how it assigns functions to the test proteins. 
Orengo-FunFams first assigns FunFam domains to a test protein then, for each of these 
FunFams, obtains corresponding GO term annotations, which are scored based on their 
frequency among the seed sequences for the given FunFam. Parental terms of these GO 
terms are also obtained. Finally, the set of all domain-GO terms annotations for the test 
protein IS considered. This differs markedly from our approach, which first obtains GO 
association values for all domains in a given protein based on tripartite network analysis, 
and then combines these values to produce a single score for each predicted protein-
annotation association using data-fusion methods.

Like the Orengo-FunFams method, DomFun performs particularly well for the no-
knowledge partial evaluation and for GOMF. However, it performs less well in full evalu-
ation procedures. The loss of training proteins due to the lack of CATH domains could 
explain this. As they will not form part of the association network, their information will 
not be available to make predictions and this could consequently decrease Fmax values.

More concretely, we obtained Fmax values of 0.624 (GOMF) and 0.492 (GOBP) for 
the no knowledge partial evaluation procedure (full details in Table 3); for the Orengo-
FunFams method these were 0.623 (GOMF) and 0.64 (GOBP). We also performed a 
comparison between our method and the Orengo-FunFams method using the CAFA 2 
training/testing dataset (data not shown), in which the Orengo-FunFams method evalu-
ation showed Fmax values of 0.58 for GOMF, and 0.39 for GOBP when making predic-
tions for Homo sapiens (Figures and 7C and 7L of the CAFA 2 supplementary material 
[26]). These values were similar to those obtained with DomFun (Table  1) for GOMF 
calculated with Simpson index with Stouffer’s method (0.592) and slightly higher for 
GOBP calculated with the same method (0.341).

Regarding coverage, we tended to obtain lower values than many of the top-perform-
ing CAFA 3 methods, particularly for FunFam predictions, although there were some 
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exceptions, as shown in Table 3 and Additional file 3: Table S3. Again, we are currently 
limited to predicting for proteins for which domain annotation is available. However, the 
methodology presented here can easily be adapted to incorporate other protein features, 
such as amino acid k-mers or motifs. To this end have made all code fully available, 
allowing the user to analyse a tripartite network including any feature of interest. Future 
work could look into optimizing our system increasing the number of protein domains 
from other databases, such as Pfam or SCOP, or other protein features.

We obtained better coverage when the associations were calculated using superfami-
lies than with FunFams, which is not surprising as not all sequences in a superfamily are 
classified into FunFams. FunFams are only generated for groups of sequences where at 
least one member has experimental characterisation [23, 29]. As such they can be con-
sidered more functionally coherent than superfamilies, which is likely to account for the 
improved performance.

Simpson index with Stouffer’s combination method using FunFams was the best per-
forming of all the methods implemented here for both the CAFA 3 and PPP benchmark, 
both for Fmax and Smin . In previous work by Clancy and Hovig, the Simpson index was 
used to calculate the similarity between pairs of genes mapped to a protein interaction 
matrix [30]. In their study, the authors explain that the similarity between two genes can 
vary significantly depending on the number of proteins used for its calculation. To solve 
this problem they used the Simpson index, which normalises the results of the similarity 
calculation by the node that has the minimum number of connections (see eq. 2 in the 
Implementation section) [30].

We have a similar problem, as there can be a large discrepancy in size between the 
numbers of proteins mapping to each domain and function. We suggest that by using 
Simpson here, we reduce this problem by normalizing to the smaller of the two.

Notably, there was much more variation in terms of performance for superfamilies. 
This may also be related to the network degree, this tended to be greater than for Fun-
Fams, as superfamilies tend to contain larger numbers of proteins. It should also be 
made clear that the homologous superfamily classification is based on domains having 
similar structures, but this does not necessarily mean they will have similar functions.

To validate our results using the CAFA 3 data, we incorporated the original Matlab 
scripts (https://​github.​com/​yuxji​ang/​CAFA2) into an automated system that is able to 
extract testing and training data from the benchmark dataset, build the tripartite net-
works to calculate associations and combine them to predict function for the testing 
proteins such that we could perform validation using CAFA3 in a high-throughput man-
ner. These scripts are available from https://​github.​com/​Elena​Rojano/​DomFun_​proje​ct 
and can be used by others to validate their own method, or to validate adaptations of our 
methods, for example by adding additional protein features to the tripartite network.

The PPP benchmark led to similar Fmax values compared to the CAFA 3 benchmark 
for all three GO sub-ontologies, especially for GOMF and GOCC. As such, we have con-
fidence in the PPP procedure in terms of judging relative performance. Based on these 
assumptions, it would appear that DomFun has slightly greater accuracy when predict-
ing KEGG and Reactome annotation than GO (Table 4).

The Fmax results for GOMF and GOCC tended to be better than for GOBP, in line 
with CAFA 3. These differences are likely due to the distinct focus of the different 

https://github.com/yuxjiang/CAFA2
https://github.com/ElenaRojano/DomFun_project
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annotation systems. GOBP terms can be quite varied regarding the different activ-
ities of proteins they encompass: these terms refer to biological processes that can 
involve a large number of distinct molecular activities, enzymatic reactions and regu-
latory processes. On the other hand, GOMF terms tend to represent more concrete 
molecular activities. As such, GOBP can be considered harder to predict for [31]. We 
hypothesize that proteins with similar molecular functions require similar domains to 
perform their activities, whereas proteins involved the same biological process might 
utilise a much wider range of domain structures, although this will also depend on the 
level of specificity of the term within the GO hierarchy.

This is also commented on in the CAFA 2 manuscript, where they argue that pre-
dictors return different results depending on the type of ontology used, and that their 
size (number of elements), depth (maximum degree of specificity) and branching fac-
tor (number of total connections between nodes) can affect the results [26].

As mentioned above, the PPP benchmark showed better results for KEGG than GO. 
These resources include well-curated representations of specific metabolic pathways 
with shared catalytic activities performed by multiple proteins, which may explain 
these findings. Further work could investigate methodology to select the more spe-
cific GO terms using semantic similarity measures [32].

Conclusion
Results for both CAFA 3 and PPP validation show that, of the 8 prediction frame-
works implemented here, combining the four association metrics with the two pro-
tein domain annotation types (superfamilies and FunFam), the best combination 
for making domain-function predictions with DomFun is the Simpson index with 
Stouffer’s method using FunFams.

We have shown that protein domain associations based on network analysis can 
be useful for predicting protein function for multiple species, showing comparable 
performance when predicting GO annotation to other methods based on structural 
domain-based in the CAFA 3 challenge. We have also presented a novel validation 
system for protein function prediction that shows similar results to the CAFA 3 
benchmark, but can also be extended to use KEGG and Reactome annotation.

DomFun has been implemented in such a way that other protein features, such as 
different domain annotation classifications can also be integrated. Future work of 
DomFun should focus on improving domain-function associations using additional 
protein-features for protein annotation, more domain annotations and predicting for 
a greater range of functional systems.

Availability and requirements

Project name: DomFun Project home page: https://​github.​com/​Elena​Rojano/​DomFun_​
proje​ct Operating system(s): Unix-like systems Programming language: Ruby, Matlab 
Other requirements: CAFA 3 benchmarking system used to compare methods License: 
GNU GPL Any restrictions to use by non-academics: None.

https://github.com/ElenaRojano/DomFun_project
https://github.com/ElenaRojano/DomFun_project
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AUC-PR: Area under the curve-precision and recall; CAFA: Critical Assessment of Function Annotation; Fmax: Maximum 
F-measure; FunFam: Functional family; HyI: Hypergeometric index; GO: Gene Ontology; GOBP: Gene Ontology biological 
process; GOCC: Gene Ontology cellular component; GOMF: Gene Ontology molecular function; KEGG: Kyoto Encyclo‑
pedia of Genes and Genomes; PCC: Pearson correlation coefficient; PR: Precision and recall; Smin: Minimum semantic 
difference.
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Additional file 1. Table S1: Fmax values for all DomFun methods and all combinations of evaluation scenarios and 
ontologies, compared to the highest equivalent value from CAFA 3 and the baseline methods. Type 1: no knowl‑
edge, type 2: limited knowledge. Mode 1: Full, mode 2: partial. FF: FunFams, SF: superfamilies. Jac: Jaccard, Sim: 
Simpson, PCC: Pearson correlation coe_cient, HyI: hypergeometric. Sto: Stou_er, Fis: Fisher.

Additional file 2. Table S2: 

Additional file 3. Table S3: DomFun Smin Top vs. CAFA Smin Top (top means lowest score). Type 1: no knowledge, 
type 2: limited knowledge. Mode 1: Full, mode 2: partial.

Additional file 4. Table S4: Coverage values for all DomFun methods and all combinations of evaluation scenarios 
and ontologies, compared to the highest equivalent value from CAFA 3 and the baseline methods. Type 1: no 
knowledge, type 2: limited knowledge. Mode 1: Full, mode 2: partial. FF: FunFams, SF: superfamilies. Jac: Jaccard, Sim: 
Simpson, PCC: Pearson correlation coefficient, HyI: hypergeometric. Sto: Stouffer, Fis: Fisher.

Additional file 5. Table S5: Smin values for all DomFun methods and all combinations of evaluation scenarios and 
ontologies, compared to the highest equivalent value from CAFA 3 and the baseline methods. Type 1: no knowl‑
edge, type 2: limited knowledge. Mode 1: Full, mode 2: partial. FF: FunFams, SF: superfamilies. Jac: Jaccard, Sim: 
Simpson, PCC: Pearson correlation coefficient, HyI: hypergeometric. Sto: Stouffer, Fis: Fisher.

Additional file 6. Fig. S1: Precision and recall curves to ascertain DomFun accuracy using domain-function associa‑
tions with FunFams (PPP). funfamsPPP.pdf Prediction results for Gene Ontology (GO) molecular functions (GOMF, red 
curves), biological process (GOBP, blue curves), GOCC (green curves), KEGG (orange curves) and Reactome pathways 
(black curves) are shown. These curves compare DomFun results using associations between FunFam domains and 
functions calculated with (a) Jaccard index, (b) Pearson Correlation Coefficient (PCC), (c) hypergeometric index (HyI) 
and (d) Simpson index. The area under the precision-recall curve (AUC-PR) for each comparison is also shown.

Additional file 7. Fig. S2: Precision and recall curves to ascertain DomFun accuracy using domain-function 
associations with superfamilies (PPP). superfamilyPPP.pdf Prediction results for Gene Ontology (GO) molecular func‑
tions (GOMF, red curves), biological process (GOBP, blue curves), GOCC (green curves), KEGG (orange curves) and 
Reactome pathways (black curves) are shown. These curves compare DomFun results using associations between 
superfamily domains and functions calculated with (a) Jaccard index, (b) Pearson Correlation Coefficient (PCC), (c) 
hypergeometric index (HyI) and (d) Simpson index. The area under the precision-recall curve (AUC-PR) for each 
comparison is also shown.
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